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Solutions are offered to the problems of data transformation and the design of efficient

programs for sampling the benthos of lakes and large rivers. All types of benthic animals

from many types of substrate, sampled with diverse sampling gear, are aggregated in a similar

fashion. Aggregation can be indexed by the unbiased exponent of the power relationship

between density and variance. A single variance stabilizing transformation can be. used for all

macrobenthos population data since the relationship of sample variance to mean density is

similar in all taxa of benthic animals. Stabilized variance in population data satisfies one of the

main assumptions of the analysis of variance and allows use of normal statistics provided

that the other assumptions are met. The fourth-root transformation stabilized the variance

in all macrobenthos samples while either the commonly used square root or logarithmic

transformations did not. Sampling programs can be optimized empirically. Standard deviation

(5) is predictable from mean density (M\ m~2) and sampler size (A; cm1) from the equation:

logioi= 0.581 + 0.696 logioA/ - 2.82 X 10"M. The data show that it is easier to obtain a

precise estimate of macrobenthos density at high densities. Small diameter samplers are most

efficient in obtaining high levels of precision. Data were taken from the literature.
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L'auteur offre des solutions aux problemes de transformation des donnees et conception

de programmes efficaces d'echantillonnage du benthos de lacs et de grandes rivieres. Tous les

types d'animaux benthiques habitant divers types de substrats, echantillonnes a l'aide d'engins

diflerents, sont groupes de la meme (agon. Un indice d'agrcgation peut etre deduil d'un

exposant non biaisti de la relation geometrique entre densite et variance. On peut utiliser une

seule variance stabilisant la transformation pour toutes les donnees sur les populations macro-

benthiques, puisque la relation entre variance d'echantillonnage et densite moyenne est scm-

blable dans tous les taxons d'animaux benthiques. La variance stabilised dans les donnees sur

les populations est conforme a I'une des principals hypotheses d'analyse de variance et permet

l'emploi de statistiques normales, pourvu que Ton se conforme aux autres hypotheses. La

transformation a la quatrieme racine a pour effet de stabiliser la variance dans tous les echantil-

lons de macrobenthos, alors que ce n'est pas le cas pour les transformations en racines carrees

ou logarithmiques communement utilisees. On peut oplimiser empiriquement les programmes

d'echantillonnage. II est possible de predire I'ecart type (s) h partir de la densite moyenne

(A/; m~J) et la taille de I'appareil d'echantillonnage (A; cm3) a partir de I'cquation : logi&s =

0,581 + 0,696 logioAf - 2,82 X lOr'A. Les donnees demontrent qu'on obtient plus facilement

une estimation de la densite du macrobenthos h de hautcs densites. Des appareils d'echantil

lonnage de faible diametre permettent d'atteindre de plus hauls niveaux de precision. Les
donnees ont 6l& extraites de travaux publics.

Received March 26, 1979 Rec.u le 26 mars 1979

Accepted August 27, 1979 Acceptd le 27 aoQt 1979

Benthic population estimates made in lakes and large of benthic populations. The problems involved in mak-

rivers are highly variable. This is due to their distribu- ing biomass estimates of benthic animals are even more

tion which is usually aggregated or contagious (Elliott difficult since precise estimates of both population and

1977). Analysis of data and the design of sampling weight must be made. In this paper I offer solutions to

surveys for aggregated populations are difficult, yet are the problems of aggregation, treatment of data, and the

of great importance if we wish to make precise estimates design of sampling surveys, towards the precise estima-

tion of benthos population density.
•A contribution to the Lake Memphremagog Project, Lim- Many measurements of the aggregation of organ-

nology Research Group, McG.ll University. isms jn space have been proposcd (cg E|HoU ,§„.

Printed in Canada (J5578) Southwood 1966; Paloheimo and Vukov 1976). In-

Imprimeau Canada (J5578) dices of aggregation fall into two categories: those
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that can be derived from population estimates from sets

of randomly placed samples, and those that must be de

rived from measures of distance between individuals.

Although indices based on the spacing of individuals

are the best measures of aggregation (Paloheimo and

Vukov 1976), these indices will not be discussed here

because they are impossible to apply to small animals

which cannot be observed directly. Only the indices cal

culable from distributions of population estimates such

as those collected by grabs and corers will be considered

here. In this paper I apply one of these indices to a large

body of benthic data to examine the tendency of organ

isms to aggregate.

The amount of clumping that we find will dictate the

method of data analysis. Since benthic population esti

mates are usually found to be contagious, the distribu

tion of density estimates of any particular population

will be nonnormal and nonrandom. Aggregated data

require the use of nonparametric statistical techniques

or data transformation prior to parametric statistical

analysis. Easy-to-use nonparametric techniques (Con-

over 1971) should be used for hypothesis testing in situ

ations where data cannot be made to conform to the

assumptions of analysis of variance. In many cases, the

use of statistical methods based on the normal distribu

tion is more desirable because these methods are useful

in summarizing the structure underlying a body of data

(Andrews et al. 1971). I will discuss only the trans

formation of data toward the use of parametric statistics

because parametric techniques are widely available and

understood, are dominant in computer packages of sta

tistical programs, and are simple to compute.

The second section of this article is a guide to the

researcher in the design of sampling programs. The con

clusions were derived from published benthic data. This

paper suggests ways in which more interpretable data

can be collected and ways of interpreting benthos data

more precisely.

Data and Analysis

The data used in this analysis were collected from pub

lished literature as well as government reports. A survey

was made of the articles listed in Biological Abstracts for

the years 1968-78 (Index: benthic, benthos, bottom, macro-

benthos, sediment). Over 600 abstracts were screened in

this manner from which 260 papers were examined. A com

puter literature survey done by the New England River

Basins Commission (Key words: benthos, benthic, macro-

benthos, and related terms) yielded 1126 abstracts and many

sets of data. While many of the papers promised "quantita

tive" data, only 23 papers yielded data for the data set be

cause many authors reported only mean densities and no

measure of dispersion.

The data set derived from the literature consists of meas

ures of mean density (x) and variance (s-) for various taxa

and groups of taxa; also included arc sampler type, sampler

size, number of replicates, and sediment type. Nearly all

of the data were counts of animals retained on a 500-600 jum

mesh. Some samples (52 sets out of 1462) were obtained

using a 270-350 pm mesh. These samples did not perform

differently than those sieved with larger screens. Data from

studies in which subsampling occurred were rare and were

not included. The data are available, at a nominal charge,

from the Depository of Unpublished Data, CISTI, National

Research Council of Canada, Ottawa, Canada K1A 0S2. I

also have a computer tape available for those wishing to

perform further analysis.

The data set discussed here contains estimates of benthic

populations and dispersion from many countries around the

world. No data were rejected on grounds other than lack of

true replication (i.e. replicates all taken same time, same

station, same sampler). The data set was constructed

primarily for examination of the freshwater benthos of

lakes, ponds, and large rivers.

Regression analysis is used to fit linear functions to sets

of data points throughout this paper. Although both vari

ables were subject to error, linear regression analysis was

performed using the Model I or least-squares method (b =

Ixy/lx"). Model I regression was used instead of the com

putationally complex Model II (Sokal and Rohlf 1969)

analysis because of the large amount of data processed.

Model II regressions were also performed on subsets of the

data using Bartlett's three-group method (Sokal and Rohlf

1969); slopes, intercepts, and confidence intervals of slopes

were very similar to those found using Model I techniques

(Table 1). The similarity of estimates by both techniques is

due to large sample sizes and high correlations between

variables (Ricker 1973).

Table 1. Comparison of Model 1 (least squares) and Model II (Bartlett's three group

method — Sokal and Rohlf 1969) techniques for the estimation of slopes (b) and confidence

intervals of slopes (95% C.I.) for log-log regressions of j2 on the x of replicate benthos samples.

n indicates the number of sets of data used in the analysis and r- is the coefficient of determina

tion (Steel and Torrie 1960). The data indicate that there is little dilTerence between the results
of the two methods of estimation.

Taxon

Acari

Hirudinae

Nematoda

Platyhelminthes

n

22

34

24

34

r2

0.98

0.54

0.88

0.87

b

1.71

1.04

1.78

1.56

Model I

95% C.I.

1.59-1.83

0.70-1.39

1.49-2.07

1.34-1.77

b

1.68

1.03

1.66

1.43

Model II

95% C.I.

1.52-1.83

0.59-1.46

1.37-1.86

1.14-1.68
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Aggregation and Transformation

Aggregation

Not only is the aggregation of organisms of interest

to ecologists from a behavioral standpoint, but to an

alyze population data properly it is also necesary to

measure the degree of aggregation accurately. Many

measures of aggregation have been derived but few are

useful since most vary with factors other than the aggre

gation of the animals. Among the most popular indices

of aggregation have been the variants of variance (s2)

to mean (it) ratio (Elliott 1977). Some examples are:

UNIFORM-

sHn - I)

x'

s lOOyV-je (s1/X) - 1

- r *• ZX - 1

where s is the standard deviation, n the number of

samples, and IX the sum of all animals in a set of repli

cate samples. The s-:x indices are difficult to apply

among sites or dates since apparent aggregation will

vary with the mean density even if the variance remains

constant. This aspect of the variance to mean ratio might

lead to equivalent measures of aggregation if differences

in s- and X, between sites or dates, balance each other

(Elliott 1977).

Another commonly used index which is also sensi

tive to variation in .f is k of the negative binomial distri

bution (s- = x + X-/k). Morisita's index of contagion

(1959; Southwood 1966) is not sensitive to variation in

x but is susceptible to variation in the area covered by

the sampler. It usually cannot be used to compare ag

gregation between studies.

An index of contagion which can be used to compare

aggregation among studies is the exponent in Taylor's

Power Law (Taylor 1961). This measure of aggregation

incorporates the density dependence of aggregative be

havior and is thus free of the confounding effects of

density (Taylor et al. 1978). Taylor's Power Function

holds well over a range of sampler sizes (Paloheimo and

Vukov 1976; Taylor and Taylor 1977), and can be

calculated from literature values if some measure of dis

persal is given with population data. Another advan

tage of the power function is that it can describe many

types of distributions in one mathematical expression

(Taylor 1965; Taylor et al. 1978). The index is calcu

lated as the slope of the relationship between log s- and

log x, the exponent b in the expression:

(0 = axi>

where x is the arithmetic mean density and s2 is the

variance of a group of replicate samples. The constant

a is a sampling factor (Southwood 1966). The exponent

b can vary from negative to positive infinity and can

describe a variety of distributions (Taylor 1965). Large

values of b indicate increasing aggregation; b > 1 in

dicates a contagious distribution. Uniform or equally

spaced distributions have b < 1. The special case of the

random or Poisson distribution (.?2 = x) occurs when

a = b—\.

TAXON w

HIRUDINEA

CHAOBORINAE

TRICHOPTERA

ISOPODA

GASTROPODA

AMPHIPODA

EPHEMEROPTERA

PELECYPODA

CERATOPOGONIDAE

OLIGOCHAETA

CHIRONOUIDAE

TOTAL DENSITY

PLATYHELMINTHES

POLYCHAETA

ACARI

nematoda

overall

transformation

•CONTAGIOUS

1.5
i—i ■

2.0

LOG(X)

Fig. 1. The degree of contagion in groups of benthic ani
mals shown as 95% confidence intervals of b from equa

tion 1. Values of b< 1 indicate that animals are evenly
spaced; values of b > 1 indicate that animals are aggregated.

Transformations shown at the bottom are those values of b
under which common transformations would be used (eq. 2).

The measure of aggregation, b, was calculated by
simple linear regression analysis for many sets of data.

The literature data were sorted and regressed to test the
hypothesis that the degree of aggregation is constant

among taxonomic groups, among sediment types, and

among animals sampled with various sampling gear
(Table 2).

Benthic animals in lakes and large rivers are aggre

gated. All power regressions of variance on the mean

show significant positive relationships (Table 2). Most
regressions of s- on the x for group of animals have b

significantly greater than 1. Few groups show signif

icantly more or less aggregation than the others (see

comparison of b in Fig. 1). Not even the least aggre

gated animals (lowest b), Hirudineae, Chaoborinae,
Trichoptera, or Isopoda are randomly distributed (a =

b = 1) because even though the confidence intervals of
b overlaps one, a is greater than one (Table 2). Further,
the variance was less than or equal to the mean in only
2.5% of 1500 sets of data examined. This indicates that
the Poisson distribution is not a good model to describe
the variability of benthos populations.

The degree of aggregation of animals in various sedi

ment types is very similar as well (Fig. 2). Although all

sediments hold animals aggregated to approximately the

same extent, there is some tendency for animals to be

less clumped in clays and more clumped in gravel (Fig.

2).

The type of sampler used also has little effect on the

contagion of the benthos. The Smith-Mclntyre grab
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Table 2. Regression variables for power function regressions of variance (s1) on mean

density (A/, nr!) of benthos population estimates where s- = ax", n is the number of sets of

observations, r2 is the coefficient of determination, and 1 - b/2 is the exact variance stabilizing

exponent (eq. 2). Chi square tests (Tsutakawa and Hewett 1977) were used to determine

whether the regression lines are significantly different from the overall regression of log jj on

log x. Significant values of x2 indicate that the regression line shows a higher (+) or lower (—)
variance overall. Asterisks indicate that test statistics are significant at P < 0.01 (**) or P <
0.05 (*), ns = not significant.

Data set

Groups ofanimals

Acari

Amphipoda

Ceratopogonidae

Chaoborinae

Chironomidae

Ephremeroptera

Gastropoda

Hirudinae

Isopoda

Nematoda

Oligochaeta

Pelecypoda

Platyhelminthes

Polychaeta

Trichoptera

Total number

Type of sediment

Clay, mud, gravel

Mud and detritus

Clay and sand

Clay and silt

Sand and mud

Sand and silt

Sand

Silt

Fluid mud

Sagittaria

Mud and gravel

Sand and gravel

Gravel

Mud

Fine sand

Type ofsampler

Allen Sampler

Ekman Grab

K-B Corer

Marukawa

Multiple Corer

Modified Ekman

Maitland Corer

Pearson Airlift

Petersen Grab

Ponar Grab

Smith-Mclntyre

Surber

Overall

n

22

92

5

4

387

47

128

34

10

24

286

138

34

13

29

154

29

31

81

58

175

106

95

121

8

12

30

71

no

466

34

10

301

37

10

4

7

4

34

722

266

20

18

1462

a

0.98** 3.03

0.84** 10.45

0.99** 6.47

0.94** 31.19

0.85** 3.94

0.83** 7.57

0.71** 11.48

0.54*

0.89*

0.88*

* 18.58

► 20.46

• 0.61

0.86** 4.92

0.83** 7.87

0.87** 4.18

0.92** 3.24

0.63** 13.21

0.69* • 3.10

0.78** 8.30

0.84*

0.82*

0.63*

0.79*

0.75*

0.85*

0.88*

0.60*

0.74*

0.70*

0.87*

0.84*

0.89*

0.85*

0.97*

0.79*

0.87*

0.74*

0.99*

0.97*

0.99*

0.94*

0.82*

0.81*

0.89*

0.93*'

0.87*

► 5.35

• 8.22

' 17.18

> 7.59

• 9.75

• 6.81

• 6.04 1

24.21

* 8.73

' 5.09

* 6.27

• 5.04

• 5.16

' 1.68

• 16.00

* 18.97

* 6.82

" 115.08

" 16.48
* 4.44

' 17.54

• 12.25

* 6.43

* 7.31

* 1.29

' 5.00 1

• 5.24

b

1.708

1.339

1.434

1.043

1.498

1.339

1.223

1.041

.149

1.781

.496

1.496

1.557
1.561

1.084

1.512

1.223

.253

.259

1.336

.340

.358

1.369

.840

.411

.418

.423

1.461

.468

.495

.687

1.323

.247

.574

.404

.368

.595

.527

.467

.343

.399

.764

.531

1.462

l-fr/2

0.15

0.33

0.28

0.48

0.25

0.33

0.39

0.48

0.43

0.11

0.25

0.29

0.22

0.22

0.46

0.24

0.39

0.37

0.37

0.33

0.33

0.32

0.32

0.31

0.29

0.29

0.29

0.27

0.27

0.25

0.16

0.34

0.38

0.21

0.30

0.32

0.20

0.24

0.27

0.33

0.30

0.12

0.23

0.27

X2 test

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

*(+)
ns

ns

ns

**(-)

ns

"(-)
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

'(+)
ns

**(+)
**(+)

ns

ns

ns

**(+)
ns

*(-)
ns

ns

gives rise to the highest b (most aggregation), possibly

due to the intermittent loss of some surface sediments

from pressure wave effects (Fig. 3).

In all cases differences in exponents are small. The

greatest variation in b is seen when data are regressed

within taxa (Fig. 1-3). Tests of the hypothesis that

groups of data vary from the overall regression of log s2:

log x show that few sets of data lie significantly above



1458 J. FISH. RES. BOARD CAN., VOL. 36, 1979

SEDIMENT

CLAY, MUD, a GRAVEL

MUD a DETRITUS

CLAY a SAND

CLAY a SILT

SAND a MUD

SAND a SILT

SAND

SILT

FLUID MUD

SAGITTARIA

MUD a GRAVEL

SAND 3 GRAVEL

GRAVEL

MUD

FINE SAND

OVERALL

UNIFORM • 'CONTAGIOUS

0.5 1.0 1.5 2.0

TRANSFORMATION LOG(X)

Fig. 2. The degree of contagion of benthic animals in

various substrates shown as the 95% confidence intervals

of b from equation 1. Values of b < 1 indicate that animals

are evenly spaced; values of b > 1 indicate that animals are

aggregated. Values of b under which common transforma

tions would be used are shown at the bottom of the figure

(eq.2).

or below the overall s2:x regression (Table 2) (nonpara-

metric technique of Tsutakawa and Hewett 1977). The

tests show that pelecypods yield a variance which is

higher than expected for any given density and that

counts of total benthos populations and populations col

lected from mixtures of mud and detritus yield a vari-

UNIFORM"

0.5
SAMPLER

EKMAN

ALLEN

PETERSEN

MULTIPLE CORER

PONAR

MARUKAWA

PEARSON AIRLIFT

MAITLAND CORER

SURBER

KAJAK BRINKHURST

MODIFIED EKMAN

SMITH MclNTYRE

OVERALL

1.0

-CONTAGIOUS

1,5 2.0

CORER

-r ■+■
TRANSFORMATION LOG(X)

Fig. 3. The degree of contagion of benthic animals taken

with various sampling gear shown as the 95% confidence

intervals of b from equation 1. Values of h < 1 indicate

that animals are evenly spaced; values of b > 1 indicate that

animals are aggregated. Values of b under which common

transformations would be used are shown at the bottom of

the figure (eq.2).

ance which is lower than expected for any density. When

regression lines are calculated on data grouped by sam

pler there are significant differences among these regres
sions in spite of fairly uniform slopes (Fig. 3). These

differences among regressions are probably due to ele

vation (increased a) which indicates that a is indeed a

factor related to sampling conditions (Southwood

1966). The amount of aggregation (b), though, is
roughly the same over all types of animals, sediments,

and samplers.

The similarity of aggregation among groups of pooled

data is not the result of broad confidence intervals due

to failure to account for differences in aggregation (b)

among sampling sites or investigators. If different sys

tems or investigators gave rise to data aggregated in

different ways, then pooled data would be made up of

many different s-:x relationships. A test of the homo

geneity of data within a pooled regression should give

us more confidence that we are not merely generating

broad regressions which cannot be separated due to

their heterogeneity. Mori (1976) studied the benthos

of Lake Biwa (Japan) during 1972 and presented tables

of raw data. Log-log regressions of variance and mean

for homogeneous data (oligochaetes within sampling

stations) were not different from the overall regression

of log s- on log x (chi square tests, P ;> 0.01). The sim

ilarity of the most homogeneous data with the over-all

regression was an example chosen at random which in

dicates the homogeneity of s2:x data. Log-log regres

sions of s- on x for oligochaetes within stations had r2

values: 0.01 at station Ie-1; 0.39 at station Nb-2; 0.03"

at station Nb-5; and 0.60 at station Na-3. These r-

values are all lower than the r- of 0.86 from pooled oli-

gochaete data (range of x within stations approximately

equal to that overall). This example indicates that the

maximum probability of separating slopes of log i2:log

x relationships (b), and thus separating differences

in contagion, would be found in pooled calculations.

The similarity of contagion among taxa, sediments, and

samplers is real and reflects the basic similarity of the

distribution of most types of benthos.

Transformation

In order that parametric statistical methods may be

applied to benthic data, the assumptions of normal anal

ysis of variance must be satisfied. Some of the major

assumptions of the analysis of variance are that the data

are normally distributed, the errors are equal and un-

corrclated with the magnitude of the means, and that

the variance components are additive (see Scheefe 1959

for a thorough review). The seriousness of violating

these assumptions will vary with the sort of hypothesis

to be tested and the nature of the data. Scheefe (1959)

found that if the number of samples is very large and

constant among treatments, and both the skewness and

kurtosis are constant among samples, then differences

among means may be tested safely using parametric

techniques without transformation to stabilize the van-
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ance. These conditions are rarely met in benthos studies

since the number of samples obtainable at each station

is often limited and the shapes of benthos density dis

tributions vary widely. The consequences of this sort of

violation of the assumptions of the analysis of variance

can be severe and can cause invalid statistical inference

(Scheefel959).

In many cases transformation will cause data to meet

the assumptions of parametric analysis adequately.

Many authors feel that transformation to stabilize the

variance (remove correlation between the variance and

the mean) will help to alleviate skewness in the distribu

tion and increase the probability of additivity (Bliss and

Owen 1958; Snedecor and Cochran 1967; Southwood

1966; Tukey 1968). Many types of analysis can be made

more valid through transformation to stabilize the vari

ance. These include: those analyses emyploying F- or

/-tests (Aveson and Schmitz 1970; Snedecor and Coch

ran 1967), linear regression (Hocking 1976), and the

randomized complete block design (Lindsey 1976). In

some cases, transformation to stabilize the variance will

not be adequate and the conformity of the data to the

assumptions of the analysis of variance should be tested

(Scheefcl959).

Taylor (1961) showed that an exact variance stabiliz

ing function (transformation) can be calculated if the

power relationship of the variance to the mean (eq. 1)

is known. This paper (Table 2; Fig. 1, 2, 3) and many

others (see Southwood 1966 for review) demonstrate

that in ecological data the variance often increases with

the mean (b > 0). Taylor (1961) found that this rela

tionship obeys a power law and that the variance in

groups of population estimates can be stabilized by

transforming the original data:

where X is an individual population estimate (number

of animals in single grab sample or number m"-'), A"

the transformed datum, and b is the exponent found in

equation 1. If b is 1 then the square root transformation

is used, if b is 2 then the log transformation has been
recommended (Taylor 1965). For all other situations

exact transformations can be calculated. Normal statis
tical methods are performed using the transformed data.

Because the slope of the log-log regressions of vari
ance and mean of benthic population estimates are all
approximately the same (Fig. 1-3), a transformation
suitable for all benthic data can be derived. Exact trans
formations for specific types of data are listed in Table

2. Few exact power transformations are significantly
different from the others regardless of type of animal,
sediment, or sampling gear used. Exact transformations
for benthic data seldom overlap the square-root trans
formation (b = 1, 1 - bl2 = 0.5) or the log trans
formation (b = 2, I - b/2 = 0) which are the com
mon transformations recommended for the transforma

tion of benthic population estimates (Elliott 1977). A
universal transformation calculated from the overall
regression of s- and x (Table 2), is not significantly dif
ferent from the fourth-root transformation. That is:

(3) X' = X°*>

This transformation can be applied successfully to most
benthic data.

The utility of the fourth root transformation in the
analysis of benthic data is illustrated in Table 3. If the

transformation is adequate then transformed data
should show no relationship between the variance and
the mean. Table 3 shows r2 values for log-log regres
sions between the variance and the mean of untrans
formed and transformed data. All untransformed data
show significant relationships between variance and
mean; loss of the significant relationship after transfor

mation indicates that the variance was stabilized by the
transformation. The fourth-root transform always stabi
lized the variance while the square-root and log trans
formations recommended by Elliott (1977) failed in
some cases. In cases where the r2 after fourth-root trans

formation is large but not statistically significant, more
stability could be gained by attention to the exact size

Table 3. Coefficients of determination (rJ) of relationship between log,**2 and logi»x for
untransformed data and data transformed with the square root (*0-6), fourth root (*<>•«), and
logarithmic (ln[*+l]) transformations. * indicates that there is a significant (P < 0.05)
correlation between *s and x. Only samples with greater than three organisms per sampler
were included because s* cannot be stabilized if x < 3 (Andersen 1965).

Author/Station

Hiltunen (1971)/#1

Hiltunen (197 t)/#l

Hiltunen (1971)/#4

Koss et al. (1974)/1G

Mori (1976)/Nb-2

Mori (1976)/Na-3

(Jan.-Dec.)

Mori (1976)/Na-3

n

14

7

12

7

10

18

6

Untransformed

0.68*

0.76*

0.67*

0.73*

0.72*

0.61*

0.97*

0.05

0.07

0.05

0.34

0.17

0.22*

0.86*

0.18

0.23

0.17

0.09

0.007

0.04

0.60

lnOH-1)

0.26

0.72*

0.07

0.01

0.01

0.001

0.34

b

1 34

1.18

1.60

2 28

1.80

2.04

2.36
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Table 4. Analysis of variance table for regression g

predicted by logio/M (£-rrr2) and area covered by sampler

(eq. 4). F' (partial F value) is calculated as the increase in

Model SS when the variable in question is entered into the

multiple regression as the last variable. F' is a measure of the

variation in logios accounted for by each independent variable.

The probability of gaining any of these F and F' values by

chance is « 0.0001.

Source of variation

Model (logics = logioM + Area)

Error

Total

Independent variable

Area

df

2

1433

1435

P
7AS(\

84

SS

718

97

816

F

5285 0.88

of b in equation 2, rather than using the universal ap

proximation of b = 1.5 (1 - b/2 = 0.25). If b, calcu

lated for the specific set of data, is significantly differ

ent from 1.5, the exact transformation should be used

and not the universal one (eq. 3). This will lead to more

frequent satisfaction of the assumptions of parametric

analysis.

Design of Sampling Programs

The primary concern in designing a sampling scheme

is to gain an accurate measurement with high precision

for the least effort. The size of the sampler or quadrat,

and the number of replicate samples taken can be varied

so that the minimum number of samples of minimum

size may be extracted to yield a specified degree of pre

cision. To date, the only means of calculating the num

ber of samples needed to yield a certain precision has

been to make some assumptions about the distribution

of data and the relationship of the variance to the mean

(Elliott 1977). Knowing the relationship of sample

variance to density, sampler size, and number of sam

ples taken would permit precise estimation of sampling

requirements (Cochran 1977).

I have shown that the variance of a set of replicates

is predictable from the mean density alone with a high

degree of precision (Table 2). Using multiple regression

analysis, I have found that the standard deviation (s) is

predictable from the mean density, and that a significant

amount of residual variation in the standard deviation

is accounted for by sampler size (Table 4). The regres

sion equation (r- = 0.88) to predict the standard devia

tion (s) is:

(4) loglos = 0.581 + 0.696 log,oM — 2.82 X 10"M

where M is the mean density in numbers m~2 and A is

the area of the sampler in cm2. The equation will pro

vide unbiased predictions of logins- in spite of the fact

that M is measured with error, provided that M is meas

ured under the same experimental conditions as those

that were used to produce the regression equation

(Guest 1961). This regression holds within the range

of M of 3.0-48 000, the range of A of 15.2-2500, and

the number of replicates from 2 to 54.

The precision of predictions made with equation 4

is shown as a comparison of observed and predicted

values in Table 5. The observations in Table 5 were not

used in the sampling survey from which the regression

was derived, nor were any data from that lake or data

collected with that sampler included. Observed and pre

dicted standard deviations are quite similar. Predictions

deviate from observations by 5 to 50% of the observed

standard deviation.

Equation 4 can be used to predict s for proposed

sampling surveys. The input variables are only the size

of available sampling gear and the mean density of

animals to be encountered. A guide to the distribution

of densities of taxa and groups of taxa (Fig. 4) can be

used to guess at the densities which will be encountered

in the field.

Because the standard error (se) is s/YTi, and se/jc

Tadle 5. Comparison of observed and predicted standard dcviation(.v) for data from Krezoski

et al. (1978). Predicted values of s are from equation 4. Columns labelled s are values ofs pre

dicted using the Poisson or negative binomial models (Elliott 1977).

Sample: Sample

Station 14

Amphipoda

Diptera

Oligochaeta

Pelecypoda

Total number

Station 18

Amphipoda

Mysidacea

Oligochaeta

Pelecypoda

Total number

Number m"2

2912

48

5661

471

9092

2678

48

634

705

4065

Observed s

1015

111

2099

371

2470

838

111

617

530

1053

Predicted s

(this paper)

959

55

1524

270

2120

904

55

333

356

1209

S:Poisson

54

7

75

22

95

52

7

25

27

64

s:k=2

2059

35

4003

334

6429

1894

35

449

499

2875
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100

DENSITY, NUMBER ni

Fig. 4. Cumulative percent frequency of macrobenthos

found in literature survey. This figure should be read "Y%

of benthos densities are less than X m~V

is a good measure of precision, we can use equation 4

to optimize sampling programs. The most probable se

can be calculated:

(5) se =

(antilog (0.581 + 0.696logM - 2.82 x W'A))/\rW

where n is the number of replicate samples. Rearranging

equation 5 slightly and substituting the acceptable level

of precision (P) in terms of M in place of the se:

(6) « =

((antilog (0.581 -f 0.696 logM - 2.82 x WA))/PAty

For example, if the desired level of precision is se

equal to 20% of the mean density, then P — 0.2. Solv

ing equation 6 will tell us the most probable number of

samples of any size we must take to gain the precision

P at any density of animals. It should be noted that the

confidence region around a predicted s will not be sym

metrical due to the log transform in equation 4.

Because equations are difficult to evaluate, some

example calculations of the number of samples neces

sary to obtain a precision of se/Jc = 0.2 for various sam

pler sizes and densities are provided in Table 6. These

calculations show that more samples must be taken with

small samplers and more samples must be taken at low

density in order to obtain the same level of precision.

The objective in optimizing sampling programs is to

gain the best precision for the least effort In most

benthic studies much of the effort is expended in pro

cessing the sediment (e.g. sieving, washing, counting).

Optimization usually requires processing the least sedi

ment for the greatest precision. The amount of sediment

processed for a se of 20% of the density can be found

by multiplying the figures in Table 6 by the area of the

sampler. The smaller numbers in Table 7 show which

regime is the most profitable. Where processing sedi

ment makes up the greatest portion of the sampling

labor, the amount of work necessary to gain any level

of precision decreases as the density of the population

under study increases. The amount of work necessary

increases with the size of the sampling device. Where

sampling itself is difficult, subsampling of large samples

might be considered. Statistical inference would only

be valid to the large sample, if subsampling is used.

Looking back to Fig. 4 and Table 6 it is obvious why

many benthic population estimates seem variable. In

studies with replicate estimates the most frequent num

ber of samples taken was 3. In such studies a se equal

to 20% of the mean density would be found consistently

only at density greater than 1000 animals m~2. Less

than 20% of the densities of benthos found in nature

lie above 1000 animals m~2 (Fig. 4) and thus 80% of

the se's found taking three replicates will be greater

than 20% of the mean. This situation could easily be

remedied by taking many samples with a small sampler,

thus increasing precision without much increase in effort

(Table 7).

The technique presented here for planning sampling

surveys differs from that of Elliott (1977) in that no

assumptions are made regarding the distribution of

benthic animals in nature. Elliott's technique requires

the adoption of an algorithm for calculating the variance

(j2) , then dividing s by V7F to calculate the expected se.

The formula for s- depends upon the assumed distribu

tion which is either measured once or simply guessed

and assumed to remain constant. Elliott (1977) sug-

See

Table 6. Number of replicate samples needed for various sampler sizes and macrobenthos

densities in order that the se of replicate samples average 20% of the mean density. Calculations

are from cq. 6.

Density

number m~2

30

50

100

300

500

1000

5000

10000

20

32

24

16

8

6

4

<2

<2

50

31

23

15

8

6

4

<2

<2

Size of sampler (cm2)

100

30

21

14

7

5

3

<2

<2

250

24

18

12

6

4

3

<2

<2

500

17

13

8

4

3

2

<2

<2

750

13

9

6

3

2

<2

<2

<2

1000

9

7

4

2

2

<2

<2

<2
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Table 7. Area of sediment (cm*) that must be sampled, sieved, and sorted in order that the

se of replicate samples average 20% of the mean density, for various sampler sizes and macro-

benthos densities. Figures are number ofsamples (Table 5) multiplied by the area of the sampler
used. Calculations are from Table S.

Density

number m~2

30

50

100

300

500

1000

5000

10000

20

640

480

320

160

120

80

40

40

50

1550

1150

750

400

300

200

100

100

Size of sampler (cm5

100

3000

2100

1400

700

500

300

200

200

250

6000

4500

3000

1500

1000

750

500

500

)

500

8500

6500

4000

2000

1500

1000

1000

1000

750

9750

6750

4500

2250

1500

1500

1500

1500

1000

9000

7000

4000

2000

2000

2000

2000

2000

gests that the Poisson distribution where s2 = x or the

negative binomial distribution (k = 2) where s- = x +

(x-)/k provide good approximations of the variability

of benthos samples. The equation which I present for

calculating s (eq. 4) is empirically derived from pub

lished data. The advantages of the empirical technique

can be seen when compared to the results assuming the

Poisson or negative binomial with constant k (Table 5).

If the Poisson is assumed when planning a sampling sur

vey, then s will be underestimated and too few samples

will be taken. If the negative binomial is assumed, then

in some cases s will be greatly overestimated and too

many samples will be taken.

The findings of this study will hold provided that

future experimental techniques are similar to those

which were included in the data set used here. For ex

ample, care should be taken to use a sampling technique

suited to the substrate (Kajak 1971) so that no extra

variability is introduced through improper sampling.

All substrates are not represented in all sampler classes

(Table 2) so this is an important consideration.

Though the data set is adequate for this analysis, I am

constantly adding data for the testing of further hypoth

eses. Any quantitative data that readers have available

would be welcomed.

Sampling the Stream Benthos

Recently a paper was published by Resh (1979) in

which the stream benthos data of Needham and Usinger

(1956) and Chutter and Noble (1966) were examined

to find the number of samples required to gain a speci

fied precision at various benthos densities. Resh found

that the number of samples necessary to gain a speci

fied precision increased with decreasing density. This

result is similar to that shown in my Table 6 so I have

compared one set of these streams benthos data with

eq. 4 which was derived from the benthos of lakes and

large rivers (Fig. 5). The predictions from eq. 4 are

significantly lower than the variability seen by Chutter

and Noble (1966) (Fig. 5) as well as the variability

seen by Needham and Usinger (1956). This suggests

that the benthic animals of stream riffles are more vari

able than those of lakes and rivers, and that sampling

programs for stream benthos should be constructed

accordingly.

o - o/X

(EQUATION 4)

LOG|0 MEAN DENSITY, (rrf2)

Fig. 5. The relationship of the variance to the mean in
stream benthos samples compared to the relationship pre

dicted by eq. 4. The stream benthos data are taken from

Chutter and Noble (1966); each data point represents the

mean and variance of a taxon (10 samples each). The least-

squares regression equation to describe s1 is: ^ = 7.24.x1"1
(n = 69; r* = 0.97). The figure shows that the benthos of

lakes and large rivers are somewhat less variable than the
benthos of a stream riffle.
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ERRATA

Volume 36, No. 12 — paper by J. A. Downing: Aggrega
tion, transformation, and the design of benthos sam-

pling programs.

Page 1461: equation 6 should be

(6) n — ((antilog (0.581 + 0.696 log hi
.. . - - " - 2.82 X \0-A))/PM)'

and Table 6 should be

Density

number m"1

30

' 50

100

300

500

1000

5000

10000

20

45

33

22

11

8

5

<2

<2

50

43

32

21

11

8

5

<2

<2

Size of sampler

100

40

30

19

10

7

5

<2

<2

250

33

24

16

8

6

4

<2

<2

(cm1)

500.

24

18

12

6

4.

3

<2

<2

750

17

13

8

4

3

2

<2

<2

1000

12

9

6

3

2

<2

<2

<2

Pace 1462: Table 7 should be

Density Size of sampler (cm1)

number m"f

30

50

100

300

500

1000

5000

10 000

20

900

660

440

220

160

100

40

40

50

2150

1600

1050

550

400

250

100

100

100

4000

3000

1900

1000

700

500

200

200

250

8250

6000

4000

2000

1500

1000

500

500

500

12000

9000

6000

3000

2000

1500

1000

1000

750

12 750

9750

6000

3000

2250

1500

1500

1500

1000

12 000

9000

6000

3000

2000

2000

2000

2000

Also see commentary in:Can. J. Fish.

Aquat. Sci. 37: 1328-1332.
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